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Cortical responses to repeated presentations of a sensory stimulus are variable. This variability is sensitive to several stimulus dimen-
sions, suggesting that it may carry useful information beyond the average firing rate. Many experimental manipulations that affect
response variability are also known to engage divisive normalization, a widespread operation that describes neuronal activity as the ratio
of a numerator (representing the excitatory stimulus drive) and denominator (the normalization signal). Although it has been suggested
that normalization affects response variability, we lack a quantitative framework to determine the relation between the two. Here we
extend the standard normalization model, by treating the numerator and the normalization signal as variable quantities. The resulting
model predicts a general stabilizing effect of normalization on neuronal responses, and allows us to infer the single-trial normalization
strength, a quantity that cannot be measured directly. We test the model on neuronal responses to stimuli of varying contrast, recorded
in primary visual cortex of male macaques. We find that neurons that are more strongly normalized fire more reliably, and response
variability and pairwise noise correlations are reduced during trials in which normalization is inferred to be strong. Our results thus
suggest a novel functional role for normalization, namely, modulating response variability. Our framework could enable a direct quan-
tification of the impact of single-trial normalization strength on the accuracy of perceptual judgments, and can be readily applied to other
sensory and nonsensory factors.
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Introduction
Variability is a widespread feature of neuronal activity in sensory
cortex: spike counts to repeated presentations of the same sen-
sory input are variable (Tolhurst et al., 1983; Arieli et al., 1996).
Traditionally, studies of neural coding have focused on the mean

response averaged over repetitions (i.e., the firing rate) to extract
the signal (differences in activity between conditions) from the
noise (changes across repeats of the same condition). In this view,
variability limits neural coding. However, just like firing rate,
variations of neuronal activity across trials also contain meaning-
ful information. For instance, stimulus onset reduces variability
in many cortical areas (Churchland et al., 2010). In early visual
cortex, variability is modulated along several stimulus dimen-
sions: for instance, contrast (Orbán et al., 2016), size (Snyder et
al., 2014), orientation (Goris et al., 2014), and motion direction
(Ponce-Alvarez et al., 2013). Nonsensory signals, such as atten-
tion (Cohen and Maunsell, 2009; Mitchell et al., 2009; Harris and
Thiele, 2011; Ecker et al., 2014; Rabinowitz et al., 2015) and lo-
comotion (Bennett et al., 2013; Dadarlat and Stryker, 2017), also
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Significance Statement

Divisive normalization is a widespread neural operation across sensory and nonsensory brain areas, which describes neuronal
responses as the ratio between the excitatory drive to the neuron and a normalization signal. Normalization plays a key role in
several important computations, including adjusting the neuron’s dynamic range, reducing redundancy, and facilitating proba-
bilistic inference. However, the relation between normalization and neuronal response variability (a fundamental aspect of neural
coding) remains unclear. Here we develop a new model and test it on primary visual cortex responses. We show that normalization
has a stabilizing effect on neuronal activity, beyond the known suppression of firing rate. This modulation of variability suggests
a new functional role for normalization in neural coding and perception.
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modulate neuronal variability. Many of these effects persist even
after accounting for firing rate differences (Churchland et al.,
2010), suggesting variability may be a genuine coding dimension
of neuronal activity.

There is evidence that modulation of variability may depend
on divisive normalization (Albrecht and Geisler, 1991; Heeger,
1992), a canonical operation evident across multiple brain areas
(Carandini and Heeger, 2011). First, experimental factors that
affect response variability, such as stimulus contrast, size, and
attentional modulation, are also thought to control the
strength of normalization (Heeger, 1992; Schwartz and Simo-
ncelli, 2001; Reynolds and Heeger, 2009; Coen-Cagli et al.,
2015). Second, numerical simulations demonstrate that nor-
malization can strongly modulate one aspect of response vari-
ability, namely, how this variability is shared between pairs of
neurons (i.e., noise correlations) (Tripp, 2012; Verhoef and
Maunsell, 2017). Furthermore, although the mechanisms of
normalization are not fully known, inhibitory stabilization of
network activity (Rubin et al., 2015; Hennequin et al., 2018)
recapitulates many effects described by normalization, further
pointing to a link between changes in variability and in effec-
tive normalization strength.

However, we lack a descriptive model of the relation between
normalization and variability. Existing normalization models de-
scribe only the firing rate, and thus cannot assess the effect of
normalization on variability. On the other hand, successful de-
scriptive models of neuronal variability (Paninski, 2004; Pillow et
al., 2008; Goris et al., 2014; Charles et al., 2018) typically ignore
normalization. We therefore develop a model that explicitly pa-
rametrizes this relation and allows us to estimate the relevant
parameters from data. The normalization equation describes the
firing rate of a neuron as the ratio between the stimulus drive to
its receptive field, and the stimulus drive to an ensemble of other
neurons (termed normalization signal). We treat the numerator
and the normalization signal as two random variables, and
derive analytical estimators for the across-trial mean and vari-
ance of their ratio, as well as an efficient method to infer the
single-trial value of the normalization signal. The model re-
produces Poisson-like behavior and rate-dependent Fano fac-
tors consistent with known cortical data (Tolhurst et al., 1983;
Goris et al., 2014). We then apply the model to macaque pri-
mary visual cortex (V1) responses to gratings of varying con-
trast because contrast modulation of firing rate is well
described by the standard normalization model (Heeger,
1992; Tolhurst and Heeger, 1997). Our model captures accu-
rately both the mean and variance of the spike count as a
function of contrast, including a systematic reduction of the
Fano factor at high contrast (Orbán et al., 2016), which other
popular descriptive models fail to capture. The model predicts
that increasing normalization strength often reduces variabil-
ity. Consistent with this prediction, we find that V1 neurons
that are more strongly normalized respond more reliably, and
V1 activity is less variable and less correlated during trials in
which the normalization signal is inferred to be stronger.

Our results thus indicate a general relation between normal-
ization and variability. The model can be extended to quantify
similar relations for other stimuli and nonsensory factors, be-
yond contrast in V1. Furthermore, it can be used to better under-
stand perception and behavior (e.g., to quantify the impact of
normalization on perception) by comparing perceptual choices
with the single-trial normalization strength.

Materials and Methods
The model
The Divisive Normalization model and the Ratio-of-Gaussians (RoG)
model. In the generic formulation of the normalization model, the aver-
age spike count of a neuron is described by the following:

R �
N

�2 � D
(1.1)

where the numerator N usually represents the stimulus drive to the neuron;
D is the normalization signal, typically conceptualized as the summed activ-
ity ofa largegroupofneuronstermednormalizationpool;NandDareassumed
non-negative; and the constant �2 prevents division by zero.

We extended the normalization model to account for response vari-
ability by treating both N and D as Gaussian-distributed random vari-
ables (see Fig. 1a), and adding Gaussian noise to the ratio (to capture
spontaneous activity fluctuations), leading to the RoG model as follows:

� Rt �
Nt

Dt
� �t

�Nt, Dt� � N � ��N,�D�,� �N
2 ��N�D

��N�D �D
2 ��

�t�N ���, ��
2 �

(1.2)

where the subscript t indexes a single trial. We have implicitly absorbed
� 2 in �D, and we assume �D � 0; �N � 0 in the standard normalization
model; this constraint makes the probability of negative values of R low.
Therefore, when fitting the model (detailed below) to non-negative
count data, parameter values that assign high probability to negative R
would lead to a bad fit (i.e., low likelihood of the data), and will be
automatically discouraged. Nonetheless, negative values of R have non-
zero probability under the RoG, whereas the firing rate is strictly not
negative. In our simulations with realistic parameters, we discarded the
rare instances with negative single-trial count.

Approximated moments of the RoG distribution. Analytical expressions
for the RoG distribution (Hinkley, 1969; Pham-Gia et al., 2006) and
other ratio distributions (Springer, 1979; Pham-Gia and Turkkan, 2005)
have been obtained, but they involve complicated expressions that make
it difficult to perform optimization and inference, and to find the mo-
ments of the distribution. A well-known example is the ratio of two
standard normal variables (i.e., the Cauchy distribution) whose mean
and variance are not even defined. This is important because we are
interested in characterizing the effects of normalization on response vari-
ability. For our purposes, a useful result is that, if D has negligible prob-
ability mass at or �0, the RoG is closely approximated by a Gaussian
(Marsaglia, 1965, 2006; Pham-Gia et al., 2006). In our context, this as-
sumption on D is well motivated, as D is usually thought of as the
summed activity of a large normalization pool of neurons, and so un-
likely to be zero or negative. Under these conditions, the RoG output is
Gaussian distributed and therefore fully characterized by its mean and
variance, for which we can derive approximations using a Taylor expan-
sion around (�N, �D) as follows:

R � �t �
�N

�D
�

	R

	N
�

��N,�D�

�N 
 �N� �
	R

	D
�

��N,�D�

�D 
 �D� � . . .

	 �t �
�N

�D
�

�N 
 �N�

�D



�N�D 
 �D�

�D
2 (1.3)

(neglecting higher-order terms) and taking the expectations, thus ob-
taining the following expressions:

� �R 	
�N

�D
� ��

�R
2 	

�N
2

�D
2 ��N

2

�N
2 �

�D
2

�D
2 
 2

��N�D

�N�D
� � ��

2

(1.4)

We validated the approximations in simulations and found that both
remained unbiased (within 0.3%) over several orders of magnitude (see
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Fig. 1b). �R
2 is mainly determined by �N

2 and �D
2 (i.e., the first term in the

parentheses), whereas �D
2 has a much smaller effect because it is small

relative to the mean (per our assumption that D is positive). The effect of
�D

2 , however, is important, as it allows for single-trial inference of D, as we
explain below.

Analytical relation between spike-count variance, stimulus drive, and
normalization strength. Equation 1.4 allows us to address directly the
question of how the average normalization strength (�D) affects response
variability. First, we address the case with no additive noise (�� � 0,
��

2 � 0). We quantify variability by the Fano factor as follows:

FR�
�R

2

�R
�

�N

�D
��N

2

�N
2 �

�D
2

�D
2 
 2

��N�D

�N�D
� (1.5)

and we study its derivative with respect to �D:

	FR

	�D
� 


�N
2

�N�D
2 
 3

�D
2 �N

�D
4 � 4

��N�D

�D
3 (1.6)

If N and D are uncorrelated (� � 0), the derivative is always negative,
implying that the Fano factor decreases with the strength of normaliza-
tion. When � � 0, the derivative can change sign. To find the amount of
correlation required for this to happen, we set the derivative to zero:

	FR

	�D
� 0 N �D � � 2� � 
4�2 
 3��D�N

�N
(1.7)

This shows that a solution exists only if � 2 � 3/4; therefore, an increase in
normalization strength can increase the Fano factor only for very large
correlation levels between N and D. Also from Equation 1.5, regardless of
the value of �, the dependence of the Fano on the numerator mean is not
monotonic in general because it is the sum of a term proportional to �N

and one proportional to �N
�1.

Next, we consider the case with ��
2 
 0. For simplicity, we set �N � 0,

and also � � 0 because it has a very limited influence per our analysis
above. In this case, the Fano factor is as follows:

FR �
1

�D�N
�N

2 �
�N

�D
3 �D

2 �
�D

�N
��

2 (1.8)

This expression shows that the relative sizes of the additive noise and of
the variances of D and N determine whether the Fano factor increases or
decreases as a function of either �D or �N.

Reproducing Poisson-like variability. A well-established property of
cortical response variability in vivo is that it is Poisson-like (i.e., the
variability increases approximately monotonically with the mean spike
count) (Tolhurst et al., 1983). For the RoG distribution, changes in mean
and variance (Eq. 1.4) are controlled by changes in the parameters of
Equation 1.2, encompassing a broader range of variance-mean relation-
ships. To further constrain the RoG parameters, we reasoned that both N
and D are described as signals of neural origin, and thus we assumed
Poisson-like variability for each of those terms separately, following a
commonly used formulation (Tolhurst et al., 1983; Carandini et al.,
1997):

�N,D
2 � �N,D�N,D

�N,D (1.9)

For � � 1, the parameter � determines the Fano factor, whereas different
values of � allow for nonconstant Fano. We used this relation separately
for the numerator and denominator of the RoG model, and this does not
imply necessarily that also the variability of R follows the same relation.
However, we found empirically that for a wide range of parameter set-
tings the variability of R is Poisson-like (see Fig. 1c). Also, if we substitute
Equation 1.9 into Equation 1.5, there is no longer a unique, monotonic
relation between the Fano factor and �D; in particular, for large enough
values of �D, the Fano factor can increase (rather than decrease) as �D

increases.

Inference of the single-trial normalization signal
An advantage of the Gaussian approximation for the RoG is that it greatly
simplifies inference. Specifically, we are interested in inferring the nor-

malization strength D in a single trial (which cannot be measured di-
rectly), given the measured spike count R. To show how this is achieved,
here we assume that all the parameters (the means and covariance of N
and D) are known: we explain in the next section the model-fitting pro-
cedure to estimate those parameters from data.

We are interested in the posterior distribution of D given R, which can
be obtained by Bayes rule as follows:

p�D�R� �
p�R�D� p�D�

p�R�
(1.10)

Here p( D) is the Gaussian prior assumed by the RoG model on D. Note
that p( R) does not depend on the value of D (only on its mean and
variance, which are fixed); therefore, we can ignore the denominator. We
first consider the case � � 0 and no additive noise (� � 0). Using the fact

that p�R�D� � N��N

D
,
�N

2

D2�, with straightforward calculations, we obtain

the following:

log p�D�R� � log��D�� 

1

2��R2�D
2 � �N

2 �D2 
 2�R�N�D
2 � �D�N

2 �D

�N
2 �D

2 

� constant (1.11)

To compute the maximum a posteriori (MAP) estimate of D (i.e. our
estimate of the normalization strength, denoted by D MAP), we search for
the zeros of the derivative of eq. (1.11) with respect to D (we assume
D � 0):

	log p�D�R�

	D
�

1

D



�R2�D
2 � �N

2 �D 
 �R�N�D
2 � �D�N

2 �

�N
2 �D

2

which equals zero only for one value of D � 0:

DMAP �
1

2�R�N�D
2 � �D�N

2

R2�D
2 � �N

2 �
� 
1

4�R�N�D
2 � �D�N

2

R2�D
2 � �N

2 � 2

�
�N

2 �D
2

R2�D
2 � �N

2 (1.12)

Lastly, we can use the Laplace approximation, and approximate log p
(D�R) by a Gaussian distribution centered at D MAP with variance

�D�R,Laplace
2 � � 1

�DMAP�2 �
R2�D

2 � �N
2

�N
2 �D

2 ��1

which measures the uncer-

tainty around the estimate D MAP. The asymptotic behavior of eq. (1.12)
provides some insight into the conditions under which the inference of D
is informative. In the limit of small prior variance �N

2 for the numerator,
the MAP estimate tends to �N/R. In other words, in this condition,
trial-by-trial fluctuations in spike count are entirely explained by fluctu-
ations in the normalization strength, and therefore the normalization
strength can be estimated accurately. Conversely, in the limit of small
prior variance �D

2 for the denominator, the MAP estimate converges to
the prior mean �D, and therefore the estimate of the normalization
strength is entirely uninformative (i.e. it is, in each trial, identical to the
average across trials). Note also that in trials with R � 0, the RoG requires
that also R � 0 and D cannot be estimated accurately; for this reason, in
our analysis of single-trial normalization strength in the experimental
data we excluded trials with no spikes (3807/12800 trials).

The case with � 
 0 is similar except that p(R�D), and therefore
p(D�R), also depend on �:

log p�D�R� � 

1

2
�	NNR2 � 2	NDR � 	DD�D2

� 
	NN�NR � 	ND��DR � �N� � 	DD�D�D � log��D�� � const.

(1.13)

where we denote with 	 the inverse of the covariance matrix between N
and D. As we explain below, in our application to V1 data we found that
including � did not improve the model’s predictive power due to over-
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fitting, therefore we only used eq. (1.12) for the single-trial inference.
However using eq. (1.13) would be just as easy in other data that war-
ranted the use of �.

Unfortunately the case with � � 0 does not have such a simple solu-
tion. The MAP estimate of D could instead be found numerically by
gradient descent, but we did not pursue this further. Nonetheless, we
found in simulations that the estimator of D (eq. (1.12)) remains approx-
imately unbiased (within 0.01%) for moderate levels of additive noise, as
long as the mean of such additive noise was correctly accounted for (i.e.
removing the additive noise mean from the stimulus-evoked spike
counts). For this reason, in our analysis of experimental data, we mea-
sured the spontaneous rate and removed it from the evoked responses
before inferring the single-trial value of D. We also verified that our
results were noisier, though not qualitatively different, when we did not
remove the spontaneous rate.

Model fitting
Maximum likelihood parameter estimation. We optimized the RoG pa-
rameters by maximum likelihood. In the general setting, the RoG model
has five free parameters (�N, �D, �N, �D, �) per stimulus condition, as
they can be stimulus-dependent, plus (��, ��). The Poisson-like as-
sumption of Equation 1.9 reduces the stimulus-dependent parameters to
three (�N, �D, �), plus (�, �), which are stimulus-independent. In our
application to the contrast response function data, we found that � leads
to overfitting; therefore, we set it to zero, and we further parametrized the
stimulus dependence of the means (details below). If we denote generi-
cally the free parameters by 
, the negative log-likelihood of a dataset of
measured responses {Rt(s)} (where t denotes the trial and s the stimulus
value) is as follows:

log p��Rt�s��;
� � constant

� �
s�1

S �
t�1

T �1

2
log
�R

2 �s,
�� �

Rt�s� 
 �R�s,
��2

2�R
2 �s,
�



	 T�

s�1

S �1

2
log
�R

2 �s,
�� �
�
Rt�s� 
 �R�s,
��2�t

2�R
2 �s,
�



�

T

2�
s

�log
�R
2 �s,
�� �

�R
2̂ �s� � 
�R̂�s� 
 �R�s,
��2

�R
2 �s,
�


 (1.14)

where in the third line we have dropped the constant; T is the number of
trials (identical for each stimulus) and S the number of stimuli; � � �t

denotes the expectation over trials; (�R̂�s�,�R
2̂ �s�) denotes the empirical

mean and variance across trials, per stimulus condition; and
(�R�s,
�, �R

2 �s,
�) are the model predictions. To find the best fit param-
eter values, we minimize the negative of the log-likelihood iteratively
using MATLAB’s “fmincon.”

By inspecting Equation 1.4 for the variance, it can be noted that the
additive noise acts as a regularizer in Equation 1.14 (i.e., preventing the
model variance to become too small). One important difference between
fitting the RoG and fitting the standard normalization model is that in
the RoG both the predicted mean and the variance of the spike count are
stimulus-dependent and so both appear in the objective function,
whereas in the standard model only the mean is stimulus-dependent and
the optimization reduces to a nonlinear least-squares problem.

Cross-validated goodness of fit. We quantified the ability of the model to
capture the data on a test dataset distinct from the training set used for
optimization. The training set contains all stimulus conditions and all
but one repetition; this held-out repetition, for all stimuli, forms the test
set. We performed leave-one-out cross validation (i.e., we averaged the
test-set results across all possible splits of the data between training and
test set). The measure of goodness of fit (also known as predictive power)
is the average log-likelihood computed on the test data. To map this value
on an interpretable scale, we normalized it between a null model and an
oracle model as is done often (Stocker and Simoncelli, 2006; Goris et al.,

2014). The null model predicts that the response mean and variance are
stimulus-independent and equal to the mean and variance across all
stimuli and repetitions in the training set. The oracle model predicts that
the mean and variance in each stimulus condition are identical to the
means and variances estimated from the training set. The normalized,
cross-validated goodness of fit approaches zero when the model is as bad
as the null model, and approaches 1 when it is as good as the oracle.

Parametrization of the contrast response function. To fit the RoG model,
we need to specify how �R�s,
�, �R

2 �s,
� depend on the stimulus and the
parameters, which in turn requires parametrizing the stimulus depen-
dence of the moments of N and D. Here we apply the RoG to contrast
response function data. Therefore, we start from the standard normal-
ization formulation, which provides excellent fits to the average spike
count as a function of contrast (Heeger, 1992) as follows:

RDN�s� � R0 �
Rmaxs

2

�2 � s2 (1.15)

Here, s denotes contrast of the visual stimulus, and (R0, Rmax, �) are free
parameters. In our experimental data, multiple orientations of the visual
stimulus were presented to the neurons, but we fit the model only to
responses to a fixed orientation (the one that elicits maximal neuronal
response, details below). Therefore, contrast s is the only relevant stim-
ulus dimension. Based on Equation 1.15, we parametrize the RoG model
such that the predicted mean response (Eq. 1.4) is identical to the pre-
diction of the normalization model as follows:

��N � Rmaxs
2

�D � �2 � s2

�� � R0

(1.16)

and we have additional free parameters for the noise variance ��
2 , as well

as (�, �N, �N, �D, �D) from Equations 1.2 and 1.9. We set R0 to the
average spontaneous activity, and we constrain the parameter range as
follows: � � 
1,100�; �N,D � 
.1,20�; �N,D � 
1,2�; � � 

1,1�; Rmax be-
tween 0.5 and 2 times the maximum response across all stimuli; and ��

2

between 0.1 and 10 times the measured variance of the spontaneous
activity. In practice, we found that treating ��

2 as a free parameter slightly
improved predictive power while changing little from its measured val-
ues. On the contrary, treating � as a free parameter produced strong
overfitting (average goodness of fit on the training set 0.82, CI [0.8 0.85];
on the test set 0.65, CI [0.64 0.68]). Therefore, we report below the results
with � � 0 rather than as a free parameter.

Alternative models
The model comparison of Figure 2 uses the popular modulated Poisson
model (Goris et al., 2014), which has been shown to capture well the
deviations of cortical variability from Poisson statistics (i.e., from con-
stant Fano factor of 1). In brief, the modulated Poisson model assumes
that spike counts evoked by a fixed stimulus are Poisson distributed, with
a rate determined by the product of a constant stimulus function (the
tuning curve) and a fluctuating gain factor (termed modulator). Across-
trial fluctuations of the modulator induce super-Poisson variability,
leading to Fano factors that increase with the mean spike count. In Figure
2, we used the model of Goris et al. (2014) for the spike-count distribu-
tion; but instead of the measured tuning curves, we used the divisive
normalization model of Equation 1.15 as the tuning curve. We then fit
jointly all parameters (those of the normalization model for the mean
tuning curve, plus the variance of the gain factor). This formulation of
the modulated Poisson model has fewer free parameters than the RoG.
For this reason, we compare the two models by cross-validation, which
automatically accounts for the difference in model complexity.

Experimental data and statistical analysis
Animal preparation and data collection. Data were collected from 4 adult
male monkeys (Macaca fascicularis). Animal preparation and general
methods were described previously (Jia et al., 2013). In brief, anesthesia
was induced with ketamine (10 mg per kg of body weight) and main-
tained during surgery with isoflurane (1.0%–2.5% in 95% O2). During
recordings, anesthesia was maintained by sufentanil citrate (6 –18 �g per
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kg per hour, adjusted as needed for each ani-
mal). Vecuronium bromide (0.15 mg per kg
per hour) was used to minimize eye move-
ments. All procedures were approved by the
Albert Einstein College of Medicine and fol-
lowed the guidelines in the United States Pub-
lic Health Service Guide for the Care and Use of
Laboratory Animals.

We recorded neuronal activity using arrays
of 10 � 10 microelectrodes (400 �m spacing, 1
mm length) inserted in the opercular region of
V1. Waveform segments that exceeded a
threshold (a multiple of the root mean square
noise on each channel) were digitized (30 kHz)
and sorted offline. For all analyses, we included
signals from well-isolated single units as well as
small multiunit clusters, and refer to both as
neurons.

Visual stimuli and presentation. We dis-
played stimuli on a calibrated CRT monitor
(1024 � 768 pixels, 100 Hz frame rate, �40 cd
m �2 mean luminance) placed 110 cm from the animal, using custom
software. We first measured the spatial receptive field of each neuron,
using small gratings (0.5° in diameter, four orientations, 250 ms presen-
tation) presented at a range of positions. Stimuli for the main experiment
were then centered on the aggregate receptive field of the population.

To measure contrast response functions, we presented drifting gratings
(1° diameter) at 4 orientations and 5 contrast levels (6.25%, 12%, 25%, 50%,
100%). We also added a 0 contrast condition to measure spontaneous activ-
ity. Stimuli were presented for 500 ms (3 animals) or 800 ms (1 animal),
separated by a blank screen of equal duration, repeated 20–25 times, and
interleaved in pseudo-random order. For each neuron, we analyzed contrast
response functions only at the best orientation tested.

Characterization of neuronal responses and inclusion criteria. We quan-
tified neuronal activity on each trial by the spike count measured in a
window starting 50 ms following stimulus onset (to account for response
latency) and ending 50 ms after stimulus offset. Due to the small stimulus
size (1°) relative to the typical spread of receptive field centers on the
array (�2.5° at the recorded eccentricity), many neurons were not driven
by the stimuli. Therefore, we included in the analysis only neurons that
were visually responsive (n � 172), defined by their average firing rate to
the best stimulus being larger than the spontaneous firing rate plus 2 SDs.

As a control, we also considered shorter count windows, starting 50 ms
following stimulus onset and ending after 75, 125, 250, or 350 ms. All our
results remained qualitatively similar, but the number of neurons and
trials that could be analyzed was progressively reduced for shorter win-
dows, for two reasons: (1) with lower spike counts, the Gaussian assump-
tion of the RoG model results in a poorer approximation and therefore
worse fit quality; as a result, fewer neurons could be included in the
model-based analyses, where we included only neurons with goodness of
fit � 0.5; and (2) the proportion of trials with zero spikes increased, thus
reducing the number of cases that could be analyzed because the single-
trial denominator cannot be estimated accurately in trials with zero
spikes, as explained above.

Statistical analysis. CIs reported throughout the text are 95% intervals
estimated on 10,000 bootstrap samples. When averaging Fano factor
across neurons or conditions, we computed the geometric mean. Signif-
icance and p values were obtained with parametric paired t test when
comparing goodness of fit for different models and in Table 1, and with a
permutation test for the Spearman correlation coefficient.

Code accessibility
Code for model simulations, fitting and inference is available without
restrictions on GitHub (https://github.com/rubencoencagli/RoG).

Results
We developed a descriptive model to quantify how normalization
affects response variability. To this aim, we extended the standard
normalization model, in which the spike count of a neuron is

described by the ratio between the stimulus drive to the neuron
(the numerator, N) and the normalization signal (the denomi-
nator, D). We treated both N and D as random variables (Fig. 1a).
Specifically, we assumed Gaussian noise in both N and D, and
thus obtained a ratio of two Gaussian variables (RoG). In this
model, the mean and variance of the spike count are not inde-
pendent: they both follow from the statistics of N and D. There is
no simple closed-form expression for the RoG distribution; but if
D has negligible probability mass at or �0 (i.e., positive mean and
relatively small variance), the RoG is closely approximated by a
Gaussian (Marsaglia, 1965, 2006; Pham-Gia et al., 2006). Under
this condition, we derived analytical expressions to approximate
the mean and variance of the RoG (Eq. 1.4; Fig. 1b).

The RoG model can capture the typical relation between
response mean and variance
Cortical responses are characterized by a monotonic relation be-
tween the variance and mean of the spike count, known as
Poisson-like variability (Tolhurst et al., 1983; Goris et al., 2014).
Most existing models include this relation explicitly (Paninski,
2004; Pillow et al., 2008; Ecker et al., 2014; Goris et al., 2014; Lin
et al., 2015; Charles et al., 2018). Differently from those models,
the RoG encompasses a broader range of mean-variance rela-
tions; therefore, we first asked whether the RoG model too can
capture Poisson-like variability. To constrain the RoG, we rea-
soned that, if N and D describe signals of neural origin, each one
of them should be Poisson-like (in particular, D is usually
thought of as the summed activity of many neurons, so also
Poisson-like). Therefore, we assumed a power-law relation be-
tween the mean and variance (Tolhurst et al., 1983; Carandini et
al., 1997) for both N and D. With these choices, the RoG model
also displayed Poisson-like variability across a broad range of
values for the power-law parameters, and the parameters could
be easily tuned to obtain variance-to-mean relations qualitatively
consistent with those typically observed in V1 (Fig. 1c).

Therefore, the RoG model can be easily constrained to capture
Poisson-like variability and has the advantage, over other models,
that it models explicitly the divisive normalization form of corti-
cal firing rates.

Contrast modulation of V1 variability is best described by the
RoG model
To test the RoG model quantitatively, we recorded responses of
macaque V1 neurons (n � 172) to sinusoidal gratings drifting in

N

D

a b c

Figure 1. RoG model. a, The RoG model describes neuronal responses as the ratio of two stimulus-driven signals: the numerator N and
denominator, or normalization signal, D. Both N and D are corrupted by additive Gaussian noise with Poisson-like variability (Eq. 1.9). b,
Comparison of the approximation we derived for the RoG mean and variance (Eq. 1.4) and the true value (estimated from 1 million
simulated trials), across 1000 experiments. Each experiment uses a different set of model parameters (i.e., corresponding to different
neurons and stimuli), and each trial is a random draw from the corresponding distribution. Red triangles represent average percentage
differencebetweentrueandapproximatedmean(left)orvariance(right). c,RoGvarianceversusmeanacross1000simulatedexperiments.
Model parameters for the simulations in b and c are drawn uniformly in the following intervals: �N � 
0,100�; �D � 
0.5, 1.5�;
�N � 1; �D � 0.01; �N � �D � 
1,1.5�; � � 
0,0.5�; �� � 0; ��

2 � 0.1�N/�D.
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4 directions at 5 contrast levels between 6.25% and 100%. Each
grating was presented for 500 – 800 ms and repeated 20 –25 times.
As our interest is on the relationship between normalization and
variability, for each neuron we analyzed only the responses to the
best direction out of those presented, and we focused instead on
contrast manipulation because normalization is known to pro-
vide excellent fits to the contrast response function (Heeger,
1992; Tolhurst and Heeger, 1997). We therefore parametrized the
means of N and D in our model as in the standard normalization
model (Eq. 1.16). Namely, we assumed N proportional to the
squared contrast, and D equal to the squared contrast plus a con-
stant. We then optimized jointly the parameters for the means of N
and D, as well as those for the power-law relation between the means
and variances, by maximum likelihood. Figure 2a, b shows for two
example neurons that the RoG model captured accurately both the
mean count (as expected) as well as the dependence of the variance
on contrast. We quantified the predictive power of the model by the
cross-validated goodness of fit (details in Materials and Methods),
that is, the log-likelihood of a test dataset not used for model train-
ing, normalized between a null model (goodness of fit � 0) and the
oracle model (goodness of fit � 1). Across all neurons, the median
cross-validated goodness of fit was 0.85 (CI [0.80 0.87]), denoting
excellent predictive power.

We observed a marked decrease in Fano factor at higher con-
trasts in the example neuron of Figure 2a, also consistent with a

previous report (Orbán et al., 2016). This
was because the variance increased with
contrast more slowly than the mean rate
(Fig. 2a). Across neurons, high-contrast
stimuli elicited lower Fano factors com-
pared with low-contrast stimuli for 138 of
172 neurons (average Fano at low contrast
3.2, CI [2.9 3.5]; at high contrast 1.9, CI
[1.7 2.0]), and the average Fano decreased
monotonically with contrast (Fig. 2c,d).
We verified that the contrast dependence
of the Fano factor was qualitatively similar
for shorter count windows, up to 75 ms,
although the average Fano was generally
smaller for shorter windows (Fig. 2d).
This behavior was captured by the RoG
model (Fig. 2a, blue curves), although we
note that the model could also capture the
opposite effect in the small subset of neu-
rons (n � 34 of 172) that displayed it (e.g.,
Fig. 2b). The RoG can capture both in-
creases and decreases of Fano factor with
contrast because contrast affects the
means of both N and D, which can have
opposing effects on Fano (Eq. 1.8). In ad-
dition, the subset of neurons whose Fano
factor increased with contrast had lower
spontaneous Fano factors and maximum
firing rate, and larger best-fit exponents
for the power law relations of N and D
(the other parameters did not change sub-
stantially; Table 1).

The main effect of contrast on Fano
factors was qualitatively at odds with the
Poisson model (constant Fano of 1), and
also with a popular extension, the mod-
ulated Poisson model (Goris et al.,
2014). In the modulated Poisson model,

the variance increases faster than the mean; and therefore, the
Fano factor could only increase with contrast, contrary to
what we observed in the data (Fig. 2c,d). To quantify this
discrepancy, we fitted an alternative model in which the mean
was parametrized as in the RoG model, but the variability was
modulated Poisson (see Alternative models). As expected, the
alternative model could not describe well the variance data,
particularly when the Fano factor decreased with contrast
(e.g., Fig. 2a, green curves), and the fit quality (median cross-
validated goodness of fit 0.62, CI [0.59 0.63]) was worse than
the RoG model for most neurons (Fig. 2e). The RoG achieved
a higher fit quality (0.79 vs 0.66, t(33) � 2.39, p � 0.023, paired
t test) also for the small subset of neurons whose Fano factor
increased with contrast (e.g., Fig. 2b). We note that the mod-
ulated Poisson model may be easily rescued with additional
free parameters (i.e., assuming that the variance of the gain
modulator is itself contrast-dependent and is reduced by high-
contrast stimulation) (Goris et al., 2017).

These results indicate that the RoG model successfully ex-
tends divisive normalization, to capture simultaneously the
stimulus dependence of spike count mean and variance.
Therefore, this model allows us to study directly how normal-
ization affects variability.

a c

d

e

b

Figure 2. RoG model captures contrast modulation of firing rate and variability. a, b, Mean spike count (top), variance (middle),
and Fano factor (bottom) as a function of contrast for two example neurons. Circles represent data. Black lines indicate 95% CI. Blue
lines indicate RoG model fits. Green lines indicate modulated Poisson model fits. c, Histogram of percentage difference between
Fano factors at high versus low contrast. d, Geometric mean (black lines) and 95% CI (shaded areas) of the Fano factor across
neurons, as a function of contrast. Different colors correspond to different spike-count windows. e, Percentage difference in
cross-validated goodness of fit between the RoG and the modulated Poisson models. For details on model fitting and evaluation,
see Materials and Methods.
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Normalization often reduces response variability
We have shown above that increasing stimulus contrast often
decreases Fano factors. Moreover, in the standard normalization
formulation, increasing stimulus contrast also increases the
strength of the normalization signal. We then asked whether this
inverse relation between strength of normalization and Fano fac-
tor is general (i.e., whether increasing normalization always con-
tributes to stabilizing the output of the RoG model). The explicit
normalization form of the RoG model allowed us to answer this
question by studying directly the relation between normalization
and variability.

We first analyzed, in the model, the dependence of the RoG
variance on the mean of D, when everything else is held constant
(including the variance of D). We found analytically that, if N and
D are uncorrelated, the RoG variance can only decrease when the
mean of D increases (Eq. 1.4). To understand this, consider first a
constant D: in this case, D simply scales the Gaussian variable N;
and therefore, it scales its variance. For variable D, the RoG vari-
ance depends also on the variance of D, but the effect of the latter
is small as we have assumed that D has small variance. Increasing
the mean of D also decreases the RoG mean; therefore, in princi-
ple, an increase in D could have different effects on the Fano
factor. However, we found analytically that the RoG mean always
decreased slower than the variance, and so increasing the mean of

D always reduced the Fano factor (Eq. 1.6). We further verified
that these results hold also if N and D are correlated, except for
extremely large correlation values (Eq. 1.7). We thus conclude
that increasing normalization strength, when everything else is
constant, usually stabilizes the RoG output.

We then considered the case with power-law relation between
the mean and variance for N and D. In this case, increasing the
mean of D increases its variance, and so the effects on the RoG
variance and Fano need not be the same as in the previous anal-
ysis. Because no simple analytical solutions could be found for
this case, we ran simulations in which we varied the mean of D
systematically while keeping the mean of N constant, and tested
different values of the parameters of the variance-to-mean rela-
tion for N and D. We observed a strong trend for reduced Fano
factors as the mean of D increased, across a broad range of pa-
rameter settings (Fig. 3a), although this trend could be reversed
for larger values of the exponent in the power law of D, or if the
additive noise has a relatively large Fano factor (see Eqs. 1.8 and
1.9 and related text).

This analysis thus suggests that, in the RoG model, normaliza-
tion often reduces spike count variability and Fano factors. If this
is the case also in V1, we would expect that, in our dataset, neu-
rons that are more strongly normalized are also less variable. To
test the prediction, we first computed for each neuron and each

Table 1. Comparison of neurons with Fano factor increasing versus decreasing with contrasta

Full-contrast Fano Spontaneous Fano Rmax � �N �
N

�N �D

Fano increasing with contrast (n � 34) 2.40 1.55 5.8 54.8 11.3 12.6 1.70 1.60
Fano decreasing with contrast (n � 138) 1.87 3.56 10.9 38.7 8.7 10.1 1.53 1.30
p value (different means) 0.04 2 � 10 �10 0.0003 0.02 0.13 0.11 0.003 9 � 10 �6

ap values are for the difference between the means of the two subpopulations. For Fano factors, p values are computed on the logarithm. Because these analyses use the best-fit parameters of the RoG model, they were performed on the
subsets of neurons with goodness of fit �0.5 (32 of 34 neurons for the first row; 120 of 138 neurons for the second row).

a b e

c f

d g

Figure 3. Normalization reduces response variability. a, Relation between the normalization strength (abscissa) and mean (ordinate, top), variance (middle), or Fano factor (bottom) in the RoG
model. Columns represent different values of the exponent of the relation between mean and variance of the denominator. Different colors represent different values of the proportionality factor
between mean and variance of the denominator. Other parameters are set to �N � 35; �D � 
0.1,10�; �N � 1; �N � 1; � � 0; �� � 0; ��

2 � 0.1�N/�D. b– d, Relation
between the z-scored normalization strength and the z-scored response mean (b), variance (c), or Fano factor (d) in the data. z scoring was performed across all neurons, but separately within each
contrast condition. Gray symbols represent individual neurons and contrasts. Blue symbols represent average across neurons and contrasts. Shaded areas represent 95% CI. e– g, Similar to b– d, but
with z scoring performed across all neurons and contrast levels with similar firing rate. Firing rate bins were logarithmically spaced between the minimum and maximum firing rates measured.
Black symbols represent average across neurons and contrasts. Shaded areas represent 95% CI
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contrast level the mean of D (i.e., the normalization strength)
from the best fit parameters. Because the analysis relies on the fit
parameters, we only included the 152 of 172 neurons with good-
ness of fit � 0.5. Different from the model analysis above, in
which we varied D while keeping N constant, in the V1 data, both
D and N varied across neurons and contrast levels. Therefore, to
isolate the effect of D, we performed two complementary analy-
ses. First, we analyzed each contrast level separately and we
z-scored the strength of D across neurons. We found that neu-
rons with stronger normalization tended to have lower mean as
expected (Fig. 3b) and even lower variance (Fig. 3c), resulting
often in lower Fano factors (Fig. 3d). Across neurons and contrast
levels, there was a significant negative correlation between the z
score of Fano and of D (Spearman correlation � �0.29, p � 6 �
10�16). The negative correlation was significant also at each in-
dividual contrast level (p � 0.03), except at 50% contrast (p �
0.68). Second, we used mean-matching (Churchland et al., 2010)
to assess the relation between normalization strength and vari-
ability, independent of firing rate. Specifically, we binned, across
neurons and contrast levels, all cases with similar firing rate and
then computed z scores within each bin. In this case, as expected,
there was no relation between the firing rate and D (Fig. 3e;
Spearman correlation � �0.02, p � 0.6), but we observed a
strong negative correlation between the variance and D (Fig. 3f;
Spearman correlation � �0.32, p � 3 � 10�19) and between the
Fano and D (Fig. 3g; Spearman correlation � �0.38, p � 9 �
10�27). We verified that these results remained qualitatively sim-
ilar for the shorter spike-count windows of Figure 2d, although
fewer neurons could be analyzed (see Materials and Methods).
Therefore, the RoG model predicts a general, inverse relation
between the average normalization strength and the variability
of cortical responses, which is apparent in V1 activity.

Inference of single-trial normalization strength
The RoG model extends the classical normalization model, al-
lowing it to simultaneously capture the mean and variance of the
spike count across trials. An important advantage of the RoG
formulation is that, because it treats the normalization signal
explicitly as a random variable, it allows for inference of the nor-
malization strength in single-trial activity, a quantity that cannot
be measured directly with current experimental techniques.
Therefore, we derived analytical expressions for the inferred
value of the single-trial normalization strength (i.e., the most
probable value of D for the observed spike count, according to the
RoG model) and its uncertainty. Intuitively, if we knew the
single-trial value of the numerator N, then we could estimate D

simply as the ratio between N and the measured spike count.
However, because N is not measurable either, we have to com-
pute a so-called posterior probability distribution of the possible
values of D, which amounts approximately to combining differ-
ent estimates of D corresponding to all possible values of N
(termed marginalization). This posterior distribution is com-
puted via a direct application of Bayes rule, that is, combining the
evidence (the likelihood of the observed spike count for different
possible values of D, under the RoG model) with the prior (i.e.,
the probability of the expected values of D, before observing the
spike count; Eq. 1.10). The prior distribution of D is, by the
definition of the RoG model, a Gaussian per Equation 1.2 whose
(prior) mean and variance are estimated separately by model
fitting across trials as shown above. The posterior distribution
can be approximated by a Gaussian too, which allowed us to
derive simple closed-form expressions for its (posterior) mean
and variance (Methods eq. (1.12)), corresponding respectively
the inferred value of D and the associated uncertainty.

We first validated these estimators in 10,000 simulated exper-
iments, each with a different set of parameters for N and D. The
example in Figure 4a shows one experiment in which, across 100
simulated trials, estimates of D were strongly correlated with the
ground-truth value. Across these simulated experiments, how-
ever, we observed a broad range of correlations (Fig. 4b,c), in-
cluding cases with nonsignificant correlation. We reasoned that,
if the prior variance of D is much smaller than that of N, the
inferred single-trial value of D cannot be accurate. Intuitively,
this is because, when the prior variance of D is small, the single-
trial value of D is always very close to the mean (i.e., it is almost
constant across trials); therefore, across-trial changes in the
ratio are largely determined by across-trial changes in N.
Therefore, while the average of D can be estimated accurately,
its single-trial variations around the average cannot. This is
also evident from Equation 1.12, where, in the limit that the
variance of N is large, the single-trial estimate of D becomes
equal to its prior mean and independent of the measured spike
count in that trial. Conversely, when the variance of D is larger
relative to N, then the inference of D should be more accurate.
In agreement with this, we found in our simulations that the
quality of the inferred values of D increased systematically
with the ratio between the variances of D and N (Fig. 4d). We
note, however, that the estimates remained unbiased on aver-
age (within 0.05% across all simulated experiments) regard-
less of the ratio of variances (Fig. 4e).

This analysis suggests that, for neurons and stimulus condi-
tions with a relatively large variance of D, we can infer accurately

a b c d e

Figure 4. Inference of single-trial normalization strength in the RoG model. a, b, Comparison of the true and inferred single-trial normalization strength, across 100 trials of two simulated
experiments. Error bars: standard deviation of the inferred values. c, Histogram of Spearman correlation coefficients between true and inferred values, across 10,000 simulated experiments each with
100 trials. The model was formulated as in Methods eq. (1.16) for the contrast response function, with parameters drawn from the uniform distribution in the following intervals:
Rmax � [10,100]; � � [15,25]; �N � �D � [1.5,2]; � � 0; �� � 0; ��

2 � 0, with contrast between 20 and 50%, and with �N, �D set to enforce a Fano factor of 1 at a 75%
contrast. d, Correlation between true and inferred values (ordinate) as a function of the ratio between the variances of the denominator and numerator in the RoG model (abscissa). Correlation
coefficients smaller than the vertical line (c) or horizontal line (d) are not statistically significant ( p�0.05). e, Difference between true and inferred values of the denominator, expressed as a fraction
of the true value.
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the single-trial value of D. Out of the 153/
172 neurons for which the RoG fit quality
was larger than 0.5, we found that n � 151
neurons satisfied this criterion (specifi-
cally, that the variance of D was at least 1%
of the variance of N) for at least one stim-
ulus contrast level. We also excluded from
this analysis the trials with zero spikes, for
which D cannot be estimated accurately
(see Methods), leaving us with n � 112
neurons. For those cases, we predicted
that, if the inference is accurate, during
trials with larger normalization signal, the
response variability should be lower. To
test this prediction, we estimated D in
each trial, and then split trials within each
contrast condition in two sets containing
values of D either above or below average.
As a control, we verified that in the trial set
with large inferred D, the mean spike
count was always lower in most cases (Fig.
5a), indicating that our estimates of D
were meaningful. Importantly, both the
spike-count variance and the Fano factor
were also systematically lower for the
large-D trials (Fig. 5b,c), in agreement
with the prediction of the RoG model. Across neurons and con-
ditions, we observed a 142% reduction (CI [139 151]%) in Fano
factor for large-D versus small-D trials. We verified that these
results remained qualitatively similar for the shorter spike-
count windows of Figure 2d, although fewer neurons could be
analyzed (see Materials and Methods). This result was also
robust to the choice of threshold (i.e., the minimum ratio
between the variances of D and N ) (Fig. 6a– c). The changes
were absent if we randomly split trials in two groups (average

difference in Fano �1000 splits � �5%, CI [�13, 6]%). As a
further control, we verified that, if we instead considered only
cases in which the ratio between the variances of D and N was
less than a small threshold (i.e., where we expect poor single-
trial estimates of D), there were no significant differences in
Fano factor between large-D and small-D trials, unless we
made the threshold large enough to effectively include many
cases with relatively large variance of D (Fig. 6d–f ).

Because normalization is thought to result from the pooled
activity of many neurons (Heeger, 1992; Carandini and Heeger,

a b c
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Figure 5. Reduced response variability during epochs with strong normalization. a, Each symbol denotes, for one neuron and one contrast condition, the mean spike count across trials with
inferred strong (ordinate) versus trials with inferred weak (abscissa) normalization signal. Only neurons with large across-trials variance of the normalization signal (at least 1% of the variance of the
numerator) and trials with at least one spike are included. b, C, Same as a, but for response variance (b) and Fano factor (c). d, e, f, Same as a, b, c, but using as a proxy of single-trial normalization
strength the total activity of a population of simultaneously recorded neurons.

a b c

d e f

Figure 6. Reduced variability during epochs with strong inferred normalization is robust to choice of threshold. a, Average spike
count (ordinate) across neurons and contrast conditions for which the ratio between denominator variance and numerator vari-
ance was larger than the threshold (abscissa). Averages are computed over the subset of trials with strong (blue) or weak (red)
inferred normalization signal. Shaded areas: 95% CI Black vertical line: the threshold used for Fig. 5. b, c, Same as (a) but for the
spike count variance (b) and Fano factor (c). d–f, Same as a– c, but including neurons and contrast conditions for which the ratio
between denominator variance and numerator variance was smaller than the threshold (abscissa). The largest threshold in d–f
and the smallest threshold in a– c correspond to including all neurons and contrast conditions.
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2011), we reasoned that the normalization signal should covary
between neurons on a trial-by-trial basis. To test this hypothesis,
we measured the correlation between the inferred denominator
for pairs of neurons recorded simultaneously. For each neuron,
we only analyzed responses to the grating orientation that elicited
maximal activity (see Materials and Methods); therefore, for this
analysis, we considered pairs of neurons with similar tuning pref-
erence (n � 179 pairs). We found that D was on average positively
correlated (median correlation 0.1 across 344 pairs and contrast
levels; Fig. 7a), and that most cases with a significant correlation
were positive (median correlation 0.54 across 27 pairs and con-
trast levels with p � 0.05; Fig. 7a black bars). Because it reflects a
shared signal, normalization is also thought to affect the coordi-
nation between neurons (Verhoef and Maunsell, 2017). Our
model allowed us to test this directly, by relating pairwise noise
correlations to normalization strength. First, for each pair of neu-
rons, we sorted the trials by the average denominator (i.e., the
average between the two neurons of the z-scored values of D) and
found that noise correlations decreased approximately mono-
tonically as the average denominator increased (Fig. 7b). Next,
for each pair and contrast, we separated the trials with large D for
both neurons and those with small D for both neurons (n � 114
cases had at least 5 trials of each kind); noise correlations were
substantially reduced across trials with large denominator rela-
tive to those with weak denominator (Fig. 7c).

We next asked whether the total population activity may be a
good proxy for the single-trial normalization strength, under the
assumption that normalization reflects the pooled activity of
many neurons. However, when we split trials based on total pop-
ulation activity, we found larger mean spike count for trials with
larger population activity (an average increase of 70%, CI [65
75]%; opposite to what would be predicted by stronger normal-
ization) but no significant change in Fano factor (a 7% increase,
CI [�6 21]%; Fig. 5d–f). This may reflect that, whereas the nor-
malization strength is conceptualized as the total activity of the
un-normalized population, the measured population activity is
already normalized, and it is therefore not a good measure of
normalization strength. Alternatively, it may be that the normal-
ization pool is distinct, or much larger, than the neurons we could
record from simultaneously.

These results thus demonstrate that the RoG model enables
accurate inference of the single-trial normalization strength
for the majority of neurons. Using this method, we found that
response variability, as well as noise correlations between sim-
ilarly tuned neurons, were lowered during epochs with strong
normalization.

Discussion
Divisive normalization is ubiquitous in neural computation and
can dramatically affect both the strength and the variability of
neuronal activity. Existing models do not offer a way to quantify
the influence of normalization on variability. Here we have intro-
duced a simple yet powerful model, the RoG, that extends the
standard normalization model to variable neuronal activity. The
RoG offers two major advantages over existing models of vari-
ability: (1) the explicit normalization formulation allowed us to
study directly the impact of normalization on response variabil-
ity; and (2) the RoG treats the normalization signal as a hidden
random variable, which allowed us to estimate the single-trial
normalization strength via Bayesian inference.

The logic of the model proposed here is fundamentally differ-
ent from that of models proposed by us and others to explain the
widespread presence of normalization (Schwartz and Simoncelli,
2001; Wainwright et al., 2001; Schwartz et al., 2007; Beck et al.,
2011; Coen-Cagli et al., 2012, 2015; Lochmann et al., 2012; Sinz
and Bethge, 2013; Snow et al., 2016). Models in this class hypoth-
esize a specific goal of neurons (e.g., efficient coding of sensory
inputs) (Barlow, 1961) and ask whether normalization achieves
that goal (i.e., these models aim to explain why neurons behave in
a way that is well described by normalization). Our goal here
instead was to provide a descriptive model (i.e., a model that
parametrizes the effects of normalization on neuronal responses
in a way that is easy to fit to data), allowing us to quantify and
interpret those effects. Using this approach, we have quantified
the relation between normalization and variability; explaining
why this relation exists and what functional role it may play, falls
in the domain of the other class of models (see, e.g., Orbán et al.,
2016).

The RoG described accurately the contrast dependence of
spike count mean and variance in macaque V1. In particular, the
model was able to reproduce the systematic reduction of the Fano
factor as contrast increased, which we observed in the majority of
recorded neurons (Fig. 2c,d). This effect is consistent with similar
recent observations (Orbán et al., 2016), but it could not be cap-
tured by the popular modulated Poisson model of response vari-
ability (Goris et al., 2014), although this model may be rescued
with additional free parameters (Goris et al., 2017) (Fig. 2e). An-
other recent model termed flexible overdispersion (Charles et al.,
2018) extends the classical Linear-Nonlinear-Poisson (LNP)
framework, and can capture a decrease of Fano factor as firing
rate increases, and thus could fit well our observation on contrast
response functions. However, this model uses a simple response

a b c

Figure 7. Normalization is shared between neurons and reduces noise correlation. a, Histogram of correlation coefficients of the inferred single-trial denominator for pairs of simultaneously
recorded neurons with similar tuning. Gray bars: pairs with non-significant correlation; black bars: pairs with significant correlation. Triangle: average correlation across all pairs. b, Black symbols and
gray shaded area: Median noise correlation and 95% CI, as a function of the average normalization strength of each pair. For each pair, the inferred values of D of each neuron were z-scored across
trials; then trials were sorted by the average z-scored D of the pair. Each point in the plot represents averages computed in windows of 12 trials. Yellow area: 95% CI for a control with trial order
shuffled independently for each neuron, to remove noise correlations. c, Histogram of noise correlation coefficients during trials with large (blue) or small (red) inferred normalization signal. These
estimates of correlations are based on few trials (as little as 5 in some cases, see related text), hence the large range of values. Triangles denote group medians.
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nonlinearity as is common in the LNP framework for tractable
optimization, and so it would not allow to study the role of divi-
sive normalization. One possibility would be to treat both the
numerator and denominator of the standard normalization
model as LNPs (i.e., similar to the RoG but using LNPs instead of
Gaussians). The disadvantage of this approach is that the spike-
count distribution may not be well approximated by a Gaussian,
and one would no longer have simple expressions for the spike
count mean and variance as in Equation 1.4, nor closed-form,
instantaneous inference of the single-trial normalization signal as
in Equation 1.12. A related point is that, when very few spikes are
observed (e.g., using short count windows, see Materials and
Methods), the RoG does not fit the data well because the spike-
count distribution deviates markedly from Gaussian. This could
be mitigated using a Poisson distribution for the spike count
conditional on the ratio D/N, and gamma distributions on D and
N. However, the resulting distribution (Holla and Bhattacharya,
1965; Karlis and Xekalaki, 2005), termed mixed Poisson beta
distribution of the second kind, has the same limitations men-
tioned above, and furthermore cannot capture Fano factors �1.

Thanks to the explicit normalization in the RoG, analysis of
the model indicated a general link between normalization and
variability (Fig. 3a). Consistent with this, we observed that neu-
rons with stronger normalization were relatively less variable
(Fig. 3b– d), and also that, for most neurons, variability was re-
duced during response epochs in which normalization was stron-
ger than average (Fig. 5a– c). One possible interpretation of these
observations is that normalization may reflect a general mecha-
nism to stabilize cortical activity, for instance, one based on dy-
namic balance between excitation and inhibition (Adesnik, 2017;
Hennequin et al., 2018). However, diverse influences of normal-
ization on variability may be apparent across cortical areas or
with different experimental manipulations, possibly reflecting
the diverse network mechanisms thought to underlie the effects
described by normalization (Carandini and Heeger, 2011), in-
cluding feedforward (Carandini et al., 2002; Webb et al., 2005),
recurrent (Ozeki et al., 2009; Rubin et al., 2015), and feedback
(Nassi et al., 2013; Nurminen et al., 2018) signals. Although our
analysis revealed primarily a stabilizing effect of normalization,
the RoG model is flexible enough to capture also the opposite
effect.

Two recent studies have also pointed to a possible impact of
normalization on response variability (Tripp, 2012; Verhoef and
Maunsell, 2017). Those studies focused on variability shared be-
tween neurons (i.e., noise correlations) and relied exclusively on
simulations. In contrast, the RoG framework allowed us to derive
analytical results linking normalization and variability. Further-
more, the RoG allows for quantitative data fitting and single-trial
inference, which are not tractable in the models of others (Tripp,
2012; Verhoef and Maunsell, 2017). The RoG model could also be
extended to capture the joint responses of two or more neurons,
simply by including N and D terms for each neuron, and assum-
ing a multivariate Gaussian distribution for the resulting collec-
tion of variables (i.e., with dimension 2 times the number of
neurons). With this extension, the number of parameters (i.e.,
the covariance matrix of the multivariate Gaussian) would grow
quadratically with the number of neurons, thus potentially lim-
iting the applicability or requiring strong regularization for large
numbers of neurons. However, for pairwise responses and under
the assumption of independence between N and D (which was
supported by our data, see Materials and Methods), the pairwise
RoG would only require two additional parameters for the cor-

relation between the N terms and between the D terms, plus one
for spontaneous noise correlations.

To optimize the RoG parameters on data, it is necessary to
consider stimulus manipulations for which the firing rate is well
described by the standard normalization model. This is the case
for contrast response functions, which motivated our choice here
to validate the RoG model. There are other stimulus manipula-
tions that are thought to involve normalization in V1, as observed
in phenomena, such as cross-orientation masking (Bonds, 1989;
DeAngelis et al., 1992; Carandini et al., 1997; Schwartz and Simo-
ncelli, 2001), surround suppression (Schwartz and Simoncelli,
2001; Cavanaugh et al., 2002; Coen-Cagli et al., 2015; Trott and
Born, 2015), and temporal adaptation (Heeger, 1992; Solomon
and Kohn, 2014; Snow et al., 2016; Westrick et al., 2016). Further-
more, normalization is also widespread (Carandini and Heeger,
2011) in other visual areas (Rust et al., 2006), and in other sensory
(Olsen et al., 2010; Ohshiro et al., 2011; Rabinowitz et al., 2011)
and nonsensory (Louie et al., 2014) areas. Applying the RoG
model to those datasets could therefore reveal whether normal-
ization has an impact on variability in other domains, similar to
what we found in V1 for contrast.

One case of particular interest is temporal adaptation, as it has
been hypothesized that adaptation effects reflect a modulation of
the normalization signal itself (Heeger, 1992; Wainwright et al.,
2001; Solomon and Kohn, 2014; Westrick et al., 2016; Aschner et
al., 2018). Inference of the single-trial normalization signal, as
enabled by the RoG model, would allow testing this hypothesis
directly. However, one limitation of the single-trial inference of
normalization strength is that it is only reliable on trials with at
least one spike, and for neurons and contrast levels with a rela-
tively large across-trial variance of the normalization signal. In
our dataset, the normalization variance was larger than 1% of the
numerator variance in �70% of the cases (516 of 760 neurons
and contrast levels). This percentage may reflect that the effective
normalization signal results from the pooled activity of many
neurons, as commonly assumed in the normalization framework
(Carandini and Heeger, 2011) and further supported by our find-
ing that the single-trial normalization signal is positively corre-
lated between neurons (Fig. 7a). If neurons in the normalization
pool have homogeneous response properties, pooling their re-
sponses should produce a more stable signal than the excitatory
drive to one neuron. This explanation also suggests that neurons
with a relatively larger variance of D, according to the RoG, may
be normalized by a more heterogeneous normalization pool. This
could be tested by measuring the tuning of the normalization
signals (Webb et al., 2005) and studying whether normalization
tuning width correlates with the estimated variance of the nor-
malization signal. Furthermore, it should be possible to differen-
tially adapt the normalization pools of the two classes of neurons:
for instance, a narrow-band adapter would weaken normaliza-
tion effects more for the neurons with small variance of D accord-
ing to the RoG.

Single-trial inference of normalization could also prove useful
in understanding attentional modulation of perception. It has
been suggested that attention improves perceptual decision-
making by modulating correlated response variability (Cohen
and Maunsell, 2009; Mitchell et al., 2009), and that this modula-
tion results from a dynamic mechanism for normalization (Ver-
hoef and Maunsell, 2017). Consistent with the results of Verhoef
and Maunsell (2017), our comparison of single-trial inferences
across neurons revealed that noise correlations between pairs of
similarly tuned neurons are reduced during epochs of strong
normalization (Fig. 7b,c). Our model (or an extension that ex-
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plicitly captures pairwise responses and noise correlations) could
allow one to test this hypothesis directly by relating single-trial
normalization strength and behavioral performance.
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